Retrieval of a Temporal High-Resolution Leaf Area Index (LAI) by Combining MODIS LAI and ASTER Reflectance Data

نویسندگان

  • Yonghua Qu
  • Wenchao Han
  • Mingguo Ma
چکیده

This paper aims to retrieve temporal high-resolution LAI derived by fusing MOD15 products (1 km resolution), field-measured LAI and ASTER reflectance (15-m resolution). Though the inversion of a physically based canopy reflectance model using high-resolution satellite data can produce high-resolution LAI products, the obstacle to producing temporal products is obvious due to the low temporal resolution of high resolution satellite data. A feasible method is to combine different source data, taking advantage of the spatial and temporal resolution of different sensors. In this paper, a high-resolution LAI retrieval method was implemented using a dynamic Bayesian network (DBN) inversion framework. MODIS LAI data with higher temporal resolution were used to fit the temporal background information, which is then updated by new, higher resolution data, herein ASTER data. The interactions between the different resolution data were analyzed from a Bayesian perspective. The proposed method was evaluated using a dataset collected in the HiWater (Heihe Watershed Allied Telemetry Experimental Research) experiment. The determination coefficient and RMSE between the estimated and measured LAI are 0.80 and OPEN ACCESS Remote Sens. 2015, 7 196 0.43, respectively. The research results suggest that even though the coarse-resolution background information differs from the high-resolution satellite observations, a satisfactory estimation result for the temporal high-resolution LAI can be produced using the accumulated information from both the new observations and background information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatia...

متن کامل

Analysis of leaf area index products from combination of MODIS Terra and Aqua data

A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra–Aqua combined 8and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the following data subsets in North America...

متن کامل

Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research.

An operational system was developed for mapping the leaf area index (LAI) for carbon cycle models from the moderate resolution imaging spectroradiometer (MODIS) data. The LAI retrieval algorithm is based on Deng et al. [2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44, 2219-2229], which uses the 4-scale radiativ...

متن کامل

Sequential Method with Incremental Analysis Update to Retrieve Leaf Area Index from Time Series MODIS Reflectance Data

High-quality leaf area index (LAI) products retrieved from satellite observations are urgently needed for crop growth monitoring and yield estimation, land-surface process simulation and global change studies. In recent years, sequential assimilation methods have been increasingly used to retrieve LAI from time series remote-sensing data. However, the inherent characteristics of these sequentia...

متن کامل

Assessment of the MODIS Leaf Area Index Product (MOD15) in Alaska

The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) Product (MOD15A2) was evaluated for the growing seasons of 2000 through 2004 in Alaska. The LAI estimate may be affected by three factors not directly related to canopy leaf area: snow melt, cloud contamination and conifer forest versus broadleaf shrub canopy type. Increases in MODIS LAI values occurred during the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015